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The numerical implementation of a minimum energy principle for atoms and mole- 
cules involving integral operators is discussed. It is demonstrated that the use of 
unscaled trial functions may be as convenient computationally as the earlier pro- 
cedures involving scaled trial functions and that the revised prescription has advantages, 
mainly in ease of interpretation and comparison of results. By way of illustration, 
some earlier calculations on theH~ ion are re-considered and compared. 
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1. Introduction 

In recent years considerable attention has been given to the proposal by Hall [1] to re- 
formulate the Schrrdinger equation 

( r +  V)~ =E~  (1) 

as an integral equation in the form 

Ck V~ = P~ (2) 

where the integral operator Gk is defined by 

c k  = ( - � 8 9  2 - T )  - I  (3) 

-with the eigenvalue E written as 

E = -�89 2 (4) 

The eigenvalue parameter p introduced in Eq. (2) is such that the physically significant 
eigenfunctions correspond to p = 1, the values of k being suitably adjusted. The process 
is seen to be equivalent to replacing the potential by p-1 V for Coulombic systems, the 
parameter # being regarded as a scaling factor, as in the work of L6wdin [2]. 

The integral equation (2) is then solved variationaUy by finding the stationary values of 
the functional 

P[~] = (r Ck Vr r (5) 

corresponding to the trial function ~(r) and subject to the condition 

= 1 (6) 
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The resulting value o fk  used in Eq. (4) then provides an upper bound for the ground 
state energy E o. The application of this procedure to atomic and molecular systems has 
been considered by Hall, Hyslop and Rees [3, 4] who discuss in detail some of the scaling 
techniques which may be utilized in practice, the latter point also being discussed by 
Robinson and Epstein [5]. 

In many applications [6-9] it was found to be advantageous to use the parameter k itself 
as scaling factor. Hence, on utilizing trial functions of the form 

r = co(kr)  (7) 

the functional (5), subject to condition (6), takes the d i r e c t  form 

k[~] = (~V, al  V~)/(coV, ~) (8) 

where the scaled Green's operator G1 is given by 

a I --- ( -21  - T )  - 1  (9) 

All quantities in Eq. (8) are expressed in terms of the scaled variables x = kr .  The advantage 
of this formulation is that k may be optimized (maximized) d i r e c t l y  with respect to the 
trial function co, using standard direct search techniques, the solution of the non-linear 
equation for k arising from (5) and (6) having been avoided. 

However, there are certain difficulties, usually of interpretation, which arise in the prac- 
tical use of the scaled trial functions (7). For instance, in molecular systems where the 
internuclear distances R are regarded as parameters, it is necessary to pre-set the sca led  

values k R ,  so that the actual value of R is not known until the approximate energy has 
been calculated. Again, in self-consistent field calculations involving scaled trial functions, 
Hyslop and Rees [9] have noted that the interpretation of such quantities as scaled inter- 
action energies requires care when variation-iteration techniques are employed. More 
generally, the coupling of the self-consistent field equations means that the relation deter- 
mining any given orbital incorporates the scaling factors of the other orbitals and these 
must therefore be determined iteratively at each stage of the calculation. This has proved 
to be computationally inconvenient in applications to three and four electron systems which 
are being currently investigated. 

Consequently, in the present paper, an alternative computational scheme based on the 
unscaled Eqs. (5) and (6) is presented. Additional non-linear parameters may be incorpor- 
ated in the trial functions to provide the flexibility previously obtained from scaling and 
optimization. 

2. Formulation of the Unscaled Equations and Optimization 

The trial function r is expressed as the linear combination 

n 

r = ~ 7;r (10) 
i=1 

and additional non-linear parameters e l ,  c2  . . . .  c m are included in the basis set {r The 
variational parameters are denoted collectively by the coluinn vector 

~ =  [ 7 1 ,  72  . . . .  7 n ,  C l , C 2  . . . .  C r n ] '  (11) 

whose components are a], ] = 1, 2, . . .  (n + m) .  
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The functional (5) may now be expressed as 

/~(ot, k) (12) 

and the conditions that/1 should be stationary and simultaneously equal to unity give rise 
to the simultaneous equations 

# = 1 (13) 

~la/3o~j = 0 j = 1, 2 , . . .  (n + m) (14) 

for the unknowns a and k. 

Eq. (13) may be expressed in matrix form as 

la = (TtGT)/(7?VT) = 1 (15) 

where the column vector 7 is given by 

7 = [71, 72 . . . .  n/n]' (16) 

and the elements of the matrices G and V are defined by 

G# = (qgiV, Gk Vr ) (17) 

and 

Vi i  = ( (9 iV  , (Oj) (18) 

Optimization with respect to the linear parameters 7 implies that 

(G - gV)7 = 0 (19) 

The resulting secular equation effectively producing a non-linear equation for k and then 
yielding the corresponding eigenvectors 7. 

Subsequent optimization with respect to each of the components cx of the vector 

C :  [C1,C2, . . .Cm] e 

produces the set of non-linear equations 

~(~) = (Y*F (x)7)/(7 * U (~')7) = 1 

the matrix elements being given by 

F}? ) = (30i/Oc x V, Gk VCj) 

and 

(2o) 

(X = 1, 2 , . . . m )  (21) 

(22) 

U}~ ) = (O~i/OcxV, Cj) (23) 

In practice, it is seen that (m + 1) non-linear equations are obtained for.the unknowns c 
and k and solution by iteration is proposed. At the rth stage of the iteration, (m + 1) 
input values c (r) and k (r) are required. The matrix eigenvalue equation is then solved in the 
usual way, the largest positive eigenvalue #(r) being computed together with the correspond- 
ing eigenvector 7 (r). These results are then used in Eqs. (21) to produce values for ~(x) 
which, in conjunction with the current value #(r) of ~t, provide the (rn + 1) function values 
required by the algorithm for the solution of the non-linear equations. 
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This numerical scheme, involving an (n x n) matrix eigenvalue problem coupled with the 
solution of (m + 1) non-linear equations, has been found to be highly competitive with the 
scaled approach which would involve the eigenvalue problem and an m-dimensional 
optimization at the second stage. 

It is essential to use routines which minimize the number of function evaluations required, 
since most of the computational effort is needed for the evaluation of the matrix elements, 
particularly those involving the Green's operator Gk. The method of Peckham [10] has 
been found to be extremely efficient in this respect for the solution of the non-linear Eqs. 
(15) and (21). The extra time taken per iteration compared with more standard procedures, 
such as that of Powell [ 11 ],  is unimportant relative to the number of function evaluations 
saved. 

3. Numerical Applications and Discussion 

A number of calculations have been carried out recently [7, 8] on the hydrogen molecular 
ion. In each case, these have been based on the scaled functional of  Eq. (8) and it is there- 
fore of interest to compare the procedures adopted there with the present general approach 
with unscaled trial functions. 

The electronic potential energy is given by 

V(r)  = - (ra 1 + r~ 1) (24) 

where r a and r b are the distances between the electron and the nuclei A and B whose 
separation is R. Initially two simple trial functions are considered, namely: 

1) ~ = r = exp ( - c u )  (25) 

2) ~b = q~, + 7r = (1 + To 2) exp( -cu)  (26) 

where the usual two-centre elliptic coordinates u and v have been used with 

u = (ra + r ~ ) / R ,  v = (ra - r ~ ) / R  (27) 

The first of these, ~1, is the simple united atom approximation utilized in [7] and is 
included for comparison purposes with the earlier work. The second trial function is the 
classical one suggested by James [12] which was also discussed by Dalgarno and Poots [13] 
in the context of the Rayleigh-Ritz variational formulation. 

The elements of the matrices V and U of Sect. 2 are easily evaluated analytically using the 
elliptic coordinates (27). For the matrices G and F the method suggested by Blakemore 
e t  al. [7] is adopted. Fourier transforms are used to reduce the integrals to triple quadra- 
tures which are then completed numerically using the suggested polar grids. The matrix 
elements are most efficiently evaluated simultaneously using the same grid points in each 
case. The iterative numerical scheme outlined in Sect. 2 was then utilized to compute the 
eigenvalues and it' was found that extremely rapid convergence was achieved, the procedure 
being highly competitive with the scaled prescription of the earlier work. Excellent initial 
values for c and k are, of course, available here by interpolation from the tabulated results 
of Ref. [7]. In the case of the trial function ~1, results which are identical with the 
scaled calculations are obtained when the same R values are used, as was verified by taking 
the values quoted in [7]. However, in the present case, the R values may be pre-set as 
parameters which is considerably more convenient for tabulation purposes. 
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Table 1. Electronic energies, - E ,  at internuclear separation R 

R 1 a 2 b 3 c 4 d 5 e Exact 

0.0 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 
0.1 1.9782 1.9782 1.9782 1.9782 1.9782 1.9782 
0.5 1.7337 1.7346 1.7347 1.7349 1.7343 1.7350 
1.0 1.4456 1.4496 1.4515 1.4517 1.4514 1.4518 
1.5 1.2353 1.2431 1.2487 1.2489 1.2487 1.2490 
2.0 1.0798 1.0912 1.1024 1.1026 1.1024 1.1026 
2.5 0.9607 0.9754 0.9935 0.9937 0.9936 0.9938 
3.0 0.8665 0.8841 0.9103 0.9107 0.9107 0.9109 
3.5 0.7902 0.8101 0.8455 0.8462 0.8464 0.8466 
5.0 0.6280 0.6530 0.7193 0.7224 0.7242 0.7244 
7.0 0.4963 0.5250 0.6294 0.6395 0.6484 0.6485 

10.0 0.3802 0.4108 0.5481 0.5716 0.6006 0.6006 

a Rayleigh-Ritz functional (28), trial function (25). 
b Green's Operator functional (5), trial function (25). 
c Rayleigh-Ritz functional (28), trial function (26). 
d Green's Operator functional (5), trial function (26). 
e Green's Operator functional (5), trial function (29). 

The results for both trial functions (25) and (26) are presented in Table 1 where the exact 
electronic energies obtained by Wind [14] are also quoted. For comparison purposes the 
approximate energies generated by the classical Rayleigh-Ritz functional 

= (~, ( r  + V)~)I(~, q~) (28) 

are shown for these trial functions. The advantage of the unscaled approach now becomes 
apparent in that direct comparison between the various sets of results may now be made 
at the same values of the internuclear separation. In previous scaled calculations, because 
of the differing scaling factors, such direct comparisons were not possible, since the 
scaled values were pre-set in each case. It will be seen that, in all cases, the upper bounds 
obtained by the Green's function approach are superior to the Rayleigh-Ritz results, the 
compensating disadvantage being, of course, the increased complexity of the required 
integrations. The main reason for this superiority is that the trial functions are operated 
on by the Green's integral operator essentially before being employed in the corresponding 
variational functional. This produces a smoothing effect and also implies that a considerable 
amount of information regarding the physical nature of the system has been effectively 
built into the wave function, by means of the associated Green's function. The resulting 
superiority of the Green's function bounds has been demonstrated theoretically in Refs. 
[31 and [4]. 

Note also that neither of the united atom trial functions (25) nor (26) will produce the 
correct limiting energies in the separated atoms limit as R + % although they are exact as 
R -~ 0. For this reason, it was decided to apply also the separated atom trial function of 
Ref. [8]. In this case, the problem of numerical integration was obviated by using potential 
weighted trial functions of the form CV, as detailed in the earlier work. To provide a more 
stringent test of the present numerical procedure the most complicated trial function of 
Ref. [8] was adopted. This involved a trial function of the form 

6 
CV = E 7icbi (29) 

i=1 



168 M. Blakemore et al. 

the orbitals being expressed as 

d9 i = Oa(ni, ll, m i ,  el)  + Oh(hi,  li, mi ,  el)  (30) 

the subscripts a and b denoting that the orbitals are centred on nuclei A and B respectively. 

Modified Slater functions are used for ~a and q~b as outl ined in Ref. [8] and, in this par- 
ticular case, the six orbitals corresponding to the ls,  2s, 2p, 3s, 3p and 3d states (with 
m i = 0 in each case) are included. The results of  this calculation are also presented in the 
Table and it is noted once more that  this procedure for solving the unscaled equations 
compares favourably with the earlier scaled prescription as well as producing a more con- 
venient tabulation. The approximate eigenvalues are in good agreement with the exact 

energies over the complete range of  R. 
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